

TAMIBIA UNIVERSITYOF SCIENCE AND TECHNOLOGY

Faculty of Health and Applied Sciences

Department of Health Sciences

QUALIFICATION: BACHELOR OF HUMAN NUTRITION		
QUALIFICATION CODE: 08B0HN	LEVEL: 6	
COURSE CODE: FCA 621S	COURSE NAME: FOOD COMPOSITION AND ANALYSIS	
SESSION: JANUARY 2020	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 100	

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER			
EXAMINER(S)	Mr. Waliomuzibu Mukisa George William		
MODERATOR:	Ms. Fiina Namukwambi		

INSTRUCTIONS		
1.	Answer ALL the questions.	
2.	Write clearly and neatly.	
3.	Number the answers clearly.	

PERMISSIBLE MATERIALS

CALCULATOR

THIS QUESTION PAPER CONSISTS OF 4 PAGES (Including this front page)

SECTION A

QUES	STION 1	(42 MARKS)
1.1	Explain the major changes that may occur in food sample before anal	ysis and
	may result in wrong results.	(8)
1.2	Explain the following terms used in establishment of research project	
	1.2.1 Sampling Plan.	(2)
	1.2.2 Compartmentalised population.	(2)
	1.2.3 Continuous population.	(2)
1.3	Outline three (3) major types of chromatographic methods used in ar	nalysis of
	carbohydrates.	(3)
1.4	In the experiment to determine the concentration of reducing sugars in	a food sample
	using the Thin Layer Chromatography, the solvent moved a distance	e 1 cm on the
	stationary phase and the two categories of reducing sugars (A and B)	in the sample,
	each moved 0.3 cm and 0.6 cm respectively.	
	1.4.1 Calculate the retention factor (R_f) of the sample.	(4)
	1.4.2 Using the R _f value explain the difference between A and B.	(5)
1.5	A found sample was weighed in crucible and the weight recorded as 3	30 kg. It was
	dried in the oven over 24 hrs period and weight of the dried sample v	vas 25 g. If the
	weight of the crucible before oven drying was 1.8 g.	
	1.5.1 Determine the moisture content (%) of the sample.	(3)
	1.5.2 Determine the total solids (%) of the sample.	(3)

1.6	Briefly	explain the difference between following terms in food analysis.	
	1.6.1	Reproducibility and Specificity.	(2)
	1.6.2	Free water and chemically bound water.	(2)
	1.6.3	Homogenous and heterogeneous population.	(2)
	1.6.4	Direct and indirect methods of moisture determination.	(2)
	1.6.5	Random errors and systematic errors.	(2)
		SECTION B	
Qι	JESTION 2	<u>2</u> (44 MA	(RKS
2.1	Explair	n the principle behind the forced oven drying.	(2)
2.2	Descri draft	be the process for determination of total solids in food using a forced oven.	(6)
2.3	•	the importance of sample dimension and water type in drying a food by forced draft oven.	(4)
2.4		be the Karl-Fisher method for the determination of moisture content disamples.	(5)
2.5	•	five reasons (5) why it is important for nutritionists and food facturers to know the moisture content of food product.	(10
2.6		n the principle for determination of mineral content of food sample mic absorption spectroscopy.	(4)
2.7	Outline	e two (2) types of spectroscopic methods used in food analysis.	(2)
2.8	Explair	n the Beer-Lambert law.	. (5)

	content of a food sample.		(6)	
QUES	TION 3	(14	MARKS)	
3.1	Outline four (4) disadvantages of the Munson and Walker method.		(4)	
3.2	Explain the spattering in relation to drying of food by gravimetric m	ethod	ls. (2)	
3.3	Describe the dry ashing method used in determination of ash conte	nt of	food. (5)	

Describe the Munson and Walker method for determination of carbohydrate

2.9

3.4

GOOD LUCK

Explain three (3) reasons for determination of ash and mineral content of foods. (3)